ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper & Brass, F&BI 908065

Date Analyzed: 08/11/09

908065-01

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR pH USING EPA METHOD 9040C

Sample ID Laboratory ID PH

CB330102 6.60

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper & Brass, F&BI 908065

Date Analyzed: 08/11/09

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TURBIDITY USING METHOD SM2130B

Results Reported as NTU

Sample ID Laboratory ID	Date <u>Sampled</u>	Time <u>Sampled</u>	Turbidity
CB330102 908065-01	08/11/09	11:45	4.1
Method Blank			<0.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: CB330102 Client: Landau Associates

Date Received: 08/11/09 Project: Alaskan Copper & Brass, F&BI 908065

Date Extracted: 08/11/09 Lab ID: 908065-01 Date Analyzed: 08/11/09 Data File: 908065-01.053 Matrix: ICPMS1 Water Instrument: Units: ug/L (ppb) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 100 60 125 Holmium 111 60 125

Concentration

Analyte: ug/L (ppb)

 Copper
 20.8

 Zinc
 9,310

 Lead
 1.63

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Landau Associates

Date Received: NA Project: Alaskan Copper & Brass, F&BI 908065

Date Extracted:08/11/09Lab ID:19-332 mbDate Analyzed:08/11/09Data File:19-332 mb.046Matrix:WaterInstrument:ICPMS1Units:ug/L (ppb)Operator:btb

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 109 60 125 Holmium 110 60 125

Concentration

Analyte: ug/L (ppb)

 Copper
 <1</td>

 Zinc
 <1</td>

 Lead
 <1</td>

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper & Brass, F&BI 908065

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR pH BY METHOD 9040C

Laboratory Code: 908068-02 (Duplicate)

y	Sample	Duplicate	Relative Percent	Acceptance
_Analyte	Result	Result	Difference	Criteria
На	6.83	6.86	0	0-20

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper & Brass, F&BI 908065

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TURBIDITY USING METHOD SM2130B

Laboratory Code: 908061-01 (Duplicate)

				Relative		
	Reporting	Sample	Duplicate	Percent	Acceptance	
Analyte	Units	Result	Result	Difference	Criteria	
Turbidity	NTII	1.4	1.4	0	0-20	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper & Brass, F&BI 908065

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 908055-01 (Duplicate)

				Relative				
		Sample	Duplicate	Percent	Acceptance			
Analyte	Reporting Units	Result	Result	Difference	Criteria			
Copper	ug/L (ppb)	7.28	7.65	5	0-20			
Zinc	ug/L (ppb)	16.3	14.8	10	0-20			
Lead	ug/L (ppb)	2.39	2.35	2	0-20			

Laboratory Code: 908055-01 (Matrix Spike)

				Percent	
		Spike	Sample	Recovery	Acceptance
Analyte	Reporting Units	Level	Result	MS	Criteria
Copper	ug/L (ppb)	20	7.28	97 b	50-150
Zinc	ug/L (ppb)	50	16.3	99 b	50-150
Lead	ug/L (ppb)	10	2.39	101 b	50-150

Laboratory Code: Laboratory Control Sample

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Copper	ug/L (ppb)	20	103	70-130
Zinc	ug/L (ppb)	50	126	70-130
Lead	ug/L (ppb)	10	104	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- ${\bf a}$ The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- $\mbox{d} v$ Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- $hr-The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- $\,$ nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- ${\sf pr}$ The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- $\mbox{\sc vo}$ The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

AQUATIC RESEARCH INCORPORATED

LABORATORY & CONSULTING SERVICES
3927 AURORA AVENUE NORTH, SEATTLE, WA 98103
PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER: FBI004-85 PAGE 1

REPORT DATE: 08/12/09

DATE SAMPLED: 08/11/09 DATE RECEIVED: 08/11/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 908065

CASE NARRATIVE

One water sample was received by the laboratory in good condition. Analysis was performed according to the chain of custody received with the sample. No difficulties were encountered in the preparation or analysis of this sample. Sample data follows while QA/QC data is contained on the following page.

SAMPLE DATA

	FOG	HARDNESS	TSS
SAMPLE ID	(mg/l)	(mgCaCO3/I)	(mg/l)
CB330102	4.02	21.9	2.3

AQUATIC RESEARCH INCORPORATED

LABORATORY & CONSULTING SERVICES 3927 AURORA AVENUE NORTH, SEATTLE, WA 98103 PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER:

FBI004-85

PAGE 2

REPORT DATE:

08/12/09

DATE SAMPLED:

08/11/09

DATE RECEIVED:

08/11/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 908065

QA/QC DATA

QC PARAMETER	FOG	HARDNESS	TSS
	(mg/l)	(mgCaCO3/I)	(mg/l)
METHOD	EPA 1664	EPA 130.2	SM20 2540D
DATE ANALYZED	08/12/09	08/12/09	08/11/09
DETECTION LIMIT	2.00	2.00	0.50
DUPLICATE			
			1 40 11 -27311-12
SAMPLE ID		CB330102	BATCH
ORIGINAL		21.9	56
DUPLICATE		22.9	60
RPD	NA	4.37%	6.90%
			0.77
SPIKE SAMPLE			
	E .		
SAMPLE ID	01	CB330102	3.
ORIGINAL		21.9	1.00 %
SPIKED SAMPLE		41.6	0.0
SPIKE ADDED		20.0	
% RECOVERY	NA	98.70%	NA
	111		
QC CHECK			
1 San Laure 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		T	
FOUND	8.50	38.3	9.2
TRUE	8.06	40.0	10
% RECOVERY	105.46%	95.77%	92.00%
2000 ay 100	2.00		
BLANK	<2.00	<2.00	<0.50

RPD – RELATIVE PERCENT DIFFERENCE NA – NOT APPLICABLE OR NOT AVAILABLE NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT OR – RECOVERY NOT CALCULABLE DUE TO SPIKESAMPLE OUT OF RANGE OR SPIKE TO LOW RELATIVE TOO SAMPLE CONCENTRATION.

SUBMITTED BY:

Steven Lazoff Laboratory Director

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 11, 2009 by Friedman & Bruya, Inc. from the Landau Associates Alaskan Copper & Brass, F&BI 908065 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID

Landau Associates

908065-01

CB330102

The sample was sent to Aquatic Research for hardness, oil and grease, and TSS analyses. Review of the enclosed report indicates that all quality assurance was acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

August 12, 2009

Joe Kalmar, Project Manager Landau Associates 130 2nd Ave. S. Edmonds, WA 98020

Dear Mr. Kalmar:

Included are the results from the testing of material submitted on August 11, 2009 from the Alaskan Copper & Brass, F&BI 908065 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Gerry Thompson, Jeff Kray NAA0812R.DOC

	Project Name Algskey (o	He, WA	S Projec		S	<u>f-C</u>		J. W.	1/2/	_		Parai	meter	Turnaround Time
	Sampler's Name G SH Langev Project Contact Toe Es was Send Results To	Merald 11	an topper Thompson	John M	Kray	T104	SA SA	A A		//	//	//	//	//
abir	Sample I.D.	Date	Time	Matrix	No. of Containers	1/1/	^g/	13	//	//	//	/	//	Observations/Comments
100000000000000000000000000000000000000	-C 8 330 J 02	8/11/09	,	H70	3	7/7	S ×							Allow water samples to settle, collect aliquot from clear portion
								H						NWTPH-Dx:run acid wash/silica gel cleanuprun samples standardized toproduct
														Analyze for EPH if no specific product identified
-				-	<u> </u>				=		‡			VOC/BTEX/VPH (soli):non-preserved preserved w/methanol preserved w/sodium bisulfate
The state of the s	153					H		-	-	7	1		=	Freeze upon receipt Dissolved metal water samples field filt
*														Other
									+					
	Special Shipment/Handling or Storage Requirements	ced				5 T E M							Metho Shipm	dof Lab drapell
	Relinquished by	- I	Received	y				R elinqu Signature		by	ii .			Received by
	Stoneture Transported Name			<u> </u>	<u>H</u>		=		,	by	<u> </u>			
	Company Date 8/11/05 Time 1.		Company Date 0 \$	11/09	Time L: L	10 00	y	Company Date	y		Time		51	Company DateTime

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper Works, F&BI 908067

Date Analyzed: 08/11/09

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR pH USING EPA METHOD 9040C

<u>Sample ID</u> <u>Laboratory ID</u>

CB330001

908067-01

6.81

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper Works, F&BI 908067

Date Analyzed: 08/11/09

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TURBIDITY USING METHOD SM2130B

Results Reported as NTU

Sample ID Laboratory ID	Date <u>Sampled</u>	Time <u>Sampled</u>	Turbidity
CB330001 908067-01	08/11/09	11:00	29.6
Method Blank			<0.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: CB330001 Client: Landau Associates Date Received: 08/11/09 Project: Alaskan Copper Works, F&BI 908067 Date Extracted: 08/11/09 Lab ID: 908067-01 08/11/09 908067-01.055 Date Analyzed: Data File: Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 101 60 125 Holmium 111 60 125

Concentration

Analyte: ug/L (ppb)

 Copper
 209

 Zinc
 253

 Lead
 14.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Landau Associates

Date Received: NA Project: Alaskan Copper Works, F&BI 908067

Date Extracted: 08/11/09 Lab ID: I9-332 mb Date Analyzed: 08/11/09 Data File: I9-332 mb.046 ICPMS1 Matrix: Water Instrument: Units: ug/L (ppb) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 109 60 125 Holmium 110 60 125

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper Works, F&BI 908067

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR pH BY METHOD 9040C

Laboratory Code: 908068-02 (Duplicate)

	Sample	Duplicate	Relative Percent	Acceptance
_Analyte	Result	Result	Difference	Criteria
pH	6.83	6.86	0	0-20

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper Works, F&BI 908067

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TURBIDITY USING METHOD SM2130B

Laboratory Code: 908061-01 (Duplicate)

	14 V 1			Relative	
	Reporting	Sample	Duplicate	Percent	Acceptance
_Analyte	Units	Result	Result	Difference	Criteria
Turbidity	NTU	1.4	1.4	0	0-20

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper Works, F&BI 908067

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 908055-01 (Duplicate)

				Relative	
Analyte	Reporting Units	Sample Result	Duplicate Result	Percent Difference	Acceptance Criteria
Copper	ug/L (ppb)	7.28	7.65	5	0-20
Zinc	ug/L (ppb)	16.3	14.8	10	0-20
Lead	ug/L (ppb)	2.39	2.35	2	0-20

Laboratory Code: 908055-01 (Matrix Spike)

		Percent					
		Spike	Sample	Recovery	Acceptance		
_Analyte	Reporting Units	Level	Result	MS	Criteria		
Copper	ug/L (ppb)	20	7.28	97 b	50-150		
Zinc	ug/L (ppb)	50	16.3	99 b	50-150		
Lead	ug/L (ppb)	10	2.39	101 b	50-150		

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Copper	ug/L (ppb)	20	103	70-130
Zinc	ug/L (ppb)	50	126	70-130
Lead	ug/L (ppb)	10	104	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- $\mbox{d} v$ Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- $ip\,$ Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- ${\bf j}$ The result is below normal reporting limits. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- $\,$ nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- \mbox{pr} The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- $vo\ -\ The\ value\ reported\ fell\ outside\ the\ control\ limits\ established\ for\ this\ an \textbf{a} lyte.$
- \boldsymbol{x} The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

AQUATIC RESEARCH INCORPORATED

LABORATORY & CONSULTING SERVICES 3927 AURORA AVENUE NORTH, SEATTLE, WA 98103 PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER: FBI004-87 PAGE 1

REPORT DATE: 08/12/09

DATE SAMPLED: 08/11/09 DATE RECEIVED: 08/11/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 908067

CASE NARRATIVE

One water sample was received by the laboratory in good condition. Analysis was performed according to the chain of custody received with the sample. No difficulties were encountered in the preparation or analysis of this sample. Sample data follows while QA/QC data is contained on the following page.

SAMPLE DATA

	FOG	HARDNESS	TSS
SAMPLE ID	(mg/l)	(mgCaCO3/l)	(mg/l)
CB330001	3.96	32.4	23

AQUATIC RESEARCH INCORPORATED

LABORATORY & CONSULTING SERVICES 3927 AURORA AVENUE NORTH, SEATTLE, WA 98103 PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER:

FBI004-87

PAGE 2

REPORT DATE: DATE SAMPLED: 08/12/09

08/11/09

DATE RECEIVED:

08/11/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 908067

QA/QC DATA

QC PARAMETER	FOG	HARDNESS	TSS
	(mg/l)	(mgCaCO3/l)	(mg/l)
METHOD	EPA 1664	EPA 130.2	SM20 2540D
DATE ANALYZED	08/12/09	08/12/09	08/11/09
DETECTION LIMIT	2.00	2.00	0.50
DUPLICATE			
SAMPLE ID	11	ВАТСН	ВАТСН
ORIGINAL		21.9	56
DUPLICATE		22.9	60
RPD	NΛ	4.37%	6.90%
SPIKE SAMPLE	27		
SAMPLE ID		BATCH	
ORIGINAL		21.9	R ION
SPIKED SAMPLE	0.00	41.6	
SPIKE ADDED		20.0	
% RECOVERY	NΛ	98.70%	NΛ
QC CHECK			
FOUND	8.50	38.3	9.2
TRUE	8.06	40.0	10
% RECOVERY	105.46%	95.77%	92.00%
			-
BLANK	<2.00	<2.00	<0.50
	C C 1 5	ACCURATE NOTE OF	

RPD - RELATIVE PERCENT DIFFERENCE

NA = NOT APPLICABLE OR NOT AVAILABLE.

NC = NOT CALCULABLE DUE TO ONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT.

OR = RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TO LOW RELATIVE TOO SAMPLE CONCENTRATION

SUBMITTED BY:

Steven Lazoff Laboratory Director

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

August 12, 2009

Joe Kalmar, Project Manager Landau Associates 130 2nd Ave. S. Edmonds, WA 98020

Dear Mr. Kalmar:

Included are the results from the testing of material submitted on August 11, 2009 from the Alaskan Copper Works, F&BI 908067 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Gerry Thompson, Jeff Kray

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 11, 2009 by Friedman & Bruya, Inc. from the Landau Associates Alaskan Copper Works, F&BI 908067 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Landau Associates</u>

908067-01 CB330001

The sample was sent to Aquatic Research for hardness, oil and grease, and TSS analyses. Review of the enclosed report indicates that all quality assurance was acceptable.

All quality control requirements were acceptable.

Project Name Alexander Project Location/Event See Sampler's Name 4	Hb, WA		No	ten Law (8/- 8/-X	2007		-	 Para	amet	Turnaround Time Standard Accelerated
Sampler's Name (SH) Project Contact (Toc K) / M Send Results To ('') Sample I.D.	Date	Time	-	No. of Containers	-/-	V.			//	//	//	//	Observations/Comments
ECB330001	8/11/09	// 00	Hzò	3	*	X	*						Allow water samples to settle, collect aliquot from clear portion NWTPH-Dx:run acid wash/silica gel cleanuprun samples standardized toproductAnalyze for EPH if no specific product identified VOC/BTEX/VPH (soil):non-preservedpreserved w/methanolpreserved w/sodium bisulfateFreeze upon receiptDissolved metal water samples field filtered
Special Shipment/Handling or Storage Requirements Religipation of the Signature of the Sig		Received b	s IN	h tt			Reline Signat Printer	ure INam					Company

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper Works, F&BI 908066

Date Analyzed: 08/11/09

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR pH USING EPA METHOD 9040C

<u>Sample ID</u>
Laboratory ID

CB331707
908066-01

6.91

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper Works, F&BI 908066

Date Analyzed: 08/11/09

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TURBIDITY USING METHOD SM2130B

Results Reported as NTU

Sample ID Laboratory ID	Date <u>Sampled</u>	Time <u>Sampled</u>	Turbidity
CB331707 908066-01	08/11/09	10:00	14.4
Method Blank			<0.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: CB331707
Date Received: 08/11/09
Date Extracted: 08/11/09
Date Analyzed: 08/11/09
Matrix: Water
Units: ug/L (ppb)

Client: Landau Associates
Project: Alaskan Copper Works, F&BI 908066

Lab ID: 908066-01
Data File: 908066-01.054
Instrument: ICPMS1
Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 104 60 125 Holmium 113 60 125

Concentration ug/L (ppb)

Copper 210
Zinc 1,250
Lead 4.40

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Landau Associates

Date Received: NA Project: Alaskan Copper Works, F&BI 908066

Date Extracted: 08/11/09 Lab ID: I9-332 mb 08/11/09 I9-332 mb.046 Date Analyzed: Data File: ICPMS1 Matrix: Water Instrument: Units: ug/L (ppb) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 109 60 125 Holmium 110 60 125

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper Works, F&BI 908066

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR pH BY METHOD 9040C

Laboratory Code: 908068-02 (Duplicate)

	Sample	Duplicate	Relative Percent	Acceptance
Analyte	Result	Result	Difference	Criteria
На	6.83	6.86	0	0-20

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper Works, F&BI 908066

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TURBIDITY USING METHOD SM2130B

Laboratory Code: 908061-01 (Duplicate)

				Relative	
	Reporting	Sample	Duplicate	Percent	Acceptance
_Analyte	Units	Result	Result	Difference	Criteria
Turbidity	NTU	1.4	1.4	0	0-20

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/09 Date Received: 08/11/09

Project: Alaskan Copper Works, F&BI 908066

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 908055-01 (Duplicate)

				Relative	
		Sample	Duplicate	Percent	Acceptance
_Analyte	Reporting Units	Result	Result	Difference	Criteria
Copper	ug/L (ppb)	7.28	7.65	5	0-20
Zinc	ug/L (ppb)	16.3	14.8	10	0-20
Lead	ug/L (ppb)	2.39	2.35	2	0-20

Laboratory Code: 908055-01 (Matrix Spike)

				Percent		
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Acceptance Criteria	
Copper	ug/L (ppb)	20	7.28	97 b	50-150	
Zinc	ug/L (ppb)	50	16.3	99 b	50-150	
Lead	ug/L (ppb)	10	2.39	101 b	50-150	

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Copper	ug/L (ppb)	20	103	70-130
Zinc	ug/L (ppb)	50	126	70-130
Lead	ug/L (ppb)	10	104	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a $The \, analyte \, was \, detected \, at \, a \, level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.$
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- $\mbox{\it ca}$ The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- \mbox{ds} The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- $\mbox{d} v$ Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- $hr\ -\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.$
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- j The result is below normal reporting limits. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- ${
 m jr}$ The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- $\,$ nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

AQUATIC RESEARCH INCORPORATED

LABORATORY & CONSULTING SERVICES 3927 AURORA AVENUE NORTH, SEATTLE, WA 98103 PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER: FBI004-86 PAGE 1

REPORT DATE: 08/12/09 DATE SAMPLED: 08/11/09

DATE RECEIVED: 08/11/09

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 908066

CASE NARRATIVE

One water sample was received by the laboratory in good condition. Analysis was performed according to the chain of custody received with the sample. No difficulties were encountered in the preparation or analysis of this sample. Sample data follows while QA/QC data is contained on the following page.

SAMPLE DATA

	FOG	HARDNESS	TSS		
SAMPLE ID	(mg/l)	(mgCaCO3/l)	(mg/l)		
CB331707	2.29	52.8	10		

AQUATIC RESEARCH INCORPORATED

LABORATORY & CONSULTING SERVICES 3927 AURORA AVENUE NORTH, SEATTLE, WA 98103 PHONE: (206) 632-2715 FAX: (206) 632-2417

CASE FILE NUMBER: FB1004-86

REPORT DATE: 08/12/09 DATE SAMPLED: 08/11/09

DATE RECEIVED:

08/11/09

PAGE 2

FINAL REPORT, LABORATORY ANALYSIS OF SELECTED PARAMETERS ON WATER

SAMPLES FROM FRIEDMAN & BRUYA, INC. / PROJECT NO. 908066

QA/QC DATA

QC PARAMETER	FOG	HARDNESS	TSS
	(mg/l)	(mgCaCO3/l)	(mg/l)
METHOD	EPA 1664	EPA 130.2	SM20 2540D
DATE ANALYZED	08/12/09	08/12/09	08/11/09
DETECTION LIMIT	2.00	2.00	0.50
	77.0		0.000
DUPLICATE			1
SAMPLE ID	50 35 0	BATCH	BATCH
ORIGINAL		21.9	56
DUPLICATE	N	22.9	60
RPD	NA	4.37%	6.90%
		Alta en de la	1.10
SPIKE SAMPLE	191		
SAMPLE ID		BATCH	e delan
ORIGINAL	1, 11	21.9	A table
SPIKED SAMPLE		41.6	
SPIKE ADDED		20.0	ā.
% RECOVERY	NA	98.70%	NA
4			
QC CHECK			
74 A.		_ B	e tre se
FOUND	8.50	38.3	9.2
TRUE	8.06	40.0	10
% RECOVERY	105.46%	95.77%	92.00%
State of the state	ELECTRON E	WINDS AND A	2 2 2 5 7
BLANK	<2.00	<2.00	<0.50

RPD – RELATIVE PERCENT DIFFERENCE.
NA – NOT APPLICABLE OR NOT AVAILABLE
NC – NOT CALC'LLABLE DUE TOONE OR MORE VALUES BEING BELOW THE DETECTION LIMIT
OR – RECOVERY NOT CALCULABLE DUE TO SPIKE SAMPLE OUT OF RANGE OR SPIKE TOLOW RELATIVE TOO SAMPLE CONCENTRATION.

SUBMITTED BY:

Steven Lazoff Laboratory Director

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

August 12, 2009

Joe Kalmar, Project Manager Landau Associates 130 2nd Ave. S. Edmonds, WA 98020

Dear Mr. Kalmar:

Included are the results from the testing of material submitted on August 11, 2009 from the Alaskan Copper Works, F&BI 908066 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Gerry Thompson NAA0812R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 11, 2009 by Friedman & Bruya, Inc. from the Landau Associates Alaskan Copper Works, F&BI 908066 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Landau Associates</u>

908066-01 CB331707

The sample was sent to Aquatic Research for hardness, oil and grease, and TSS analyses. Review of the enclosed report indicates that all quality assurance was acceptable.

All quality control requirements were acceptable.

			- 011	ain-o								2000		7
Project Name ALASKAN Project Location/Event SE Sampler's Name GOH Project Contact TERAL Send Results To 1)						10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Test	ing i	-arar	neter	Turnaround Time
Sample I.D.	Date	Time	Matrix	No. of Containers	/5	1	119	//	/	/ /	/	//	/ /	Observations/Comments
CB 32 1707	3/11/69	/000	flzo	3	*		7							Allow water samples to settle, collect aliquot from clear portion NWTPH-Dx:run acid wash/silica gel cleanuprun samples standardized toproduct Analyze for EPH if no specific product identified VOC/BTEX/VPH (soli):non-preservedpreserved w/methanolpreserved w/sodium bisulfateFreeze upon receipt
							+	-					-	Dissolved metal water samples field filte
							1							
	1						-	-			\perp		-	
SpecialShipment/Handling						2 24	- 1-		1	1	1		Metho Shipm	od of Lab drop-off
or Storage Requirements Relinguished by Signature	ICed F	Received I	by Uh			2 2		nquisi	ned b	y	WWW.		Snipm	Received by